Optimizing Performance Variables for Small Unmanned Aerial Vehicle Co-axial Rotor Systems
نویسندگان
چکیده
The aim of this project was to design and build a test-rig that is capable of analyzing small unmanned aerial vehicles (SUAV) co-axial rotor systems. The intention of the test-rig development was to highlight important aeromechanical components and variables that dictate the co-axial units flight performance, with the intention of optimizing the propulsion systems for use on HALO a co-axial SUAV designed by the Autonomous Systems Lab at Middlesex University. The major contributions of this paper are: an optimum COTS co-axial configuration with regards to motor and propeller variations, a thorough review and validation of co-axial rotor systems inter-rotor spacing which in turn identified an optimum H/D ratio region of between (0.41–0.65).
منابع مشابه
Taiwanese Institute of Knowledge Innovation ( TIKI )
Small unmanned aerial vehicles (SUAV) are beginning to dominate the area of intelligence, surveillance, target acquisition and reconnaissance (ISTAR) in forward operating battlefield scenarios. Of particular interest are vertical take-off and landing (VTOL) variants. Within this category co-axial rotor designs have been adopted due to their inherent advantages of size and power to weight ratio....
متن کاملAn Empirical Study of Overlapping Rotor Interference for a Small Unmanned Aircraft Propulsion System
The majority of research into full-sized helicopter overlapping propulsion systems involves co-axial setups (fully overlapped). Partially overlapping rotor setups (tandem, multirotor) have received less attention, and empirical data produced over the years is limited. The increase in demand for compact small unmanned aircraft has exposed the need for empirical investigations of overlapping prop...
متن کاملDevelopment of a Reconfigurable Protective System for Multi-Rotor Unmanned Aerial Systems
The purpose of this study is to illustrate how the design and deployment of a minimal protective system for multi-rotorcraft can cater for changes in legislation and provide for greater use both in and outdoors. A methodology is presented to evaluate the design and development of a system which protects both single axial and co-axial rotorcraft. The key emphasis of the development presented is ...
متن کاملFuzzy Adaptive Control of Unmanned Aerial Vehicle for Carrying Time-Varying Cargo on Predefined Path
At present, the use of unmanned aerial vehicles (UAVs) has been increased dramatically. The reasons for this development are cheapness, smallness, simplicity, and diversity of missions. The simplicity of guidance and control of multi-rotor drones is that they are equipped with an autopilot system. This system is responsible for flying control. UAVs do not have a high weight and often have three...
متن کاملControlling an unmanned quad-rotor aerial vehicle with model parameter uncertainty and actuator failure
It is challenging to stabilise an unmanned quad-rotor aerial vehicle when a dynamic change in its model parameters or failure of its actuator occurs. In this paper, a quad-rotor unmanned aerial vehicle (UAV) is controlled based on model reference adaptive control (MRAC) and a linear quadratic regulator (LQR). The kinematics and dynamics of the quad-rotor are calculated, and Lyapunov’s direct st...
متن کامل